
Exam Quantum Field Theory
July 10, 2015

Start: 14:00h End: 17:00h

Each sheet with your name and student ID

INSTRUCTIONS: This is a closed-book and closed-notes exam. You are allowed to bring one A4
page written by you on one side, with useful formulas. The exam duration is 3 hours. There is a
total of 9 points that you can collect.

NOTE: If you are not asked to Show your work, then an answer is sufficient. However, you
might always earn more points by answering more extensively (but you can also loose points by
adding wrong explanations). If you are asked to Show your work, then you should explain your
reasoning and the mathematical steps of your derivation in full. Use the official exam paper for all
your work and ask for more if you need.

USEFUL FORMULAS

The chirality(spin) projectors for spin 1/2 Dirac fermions:

PL =
1− γ5

2
PR =

1 + γ5
2

PLPR = 0 P 2
L = PL P 2

R = PR

{γ5, γµ} = 0 γ25 = 11

Tr(γµγνγαγβ) = 4
(
gµνgαβ − gµαgνβ + gµβgνα

)
(d = 4)

Tr(γ5γ
µ) = Tr(γ5γ

µγν) = Tr(γ5γ
µγνγα) = 0

Conversion factor: 1 s−1 = 6.58× 10−25 GeV
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1. (2 points) Given the lagrangian density

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − g

3!
φ3

for a real scalar field φ with a cubic self-interaction, derive the formula for the complete n-point
Green’s function

G(n)(x1, . . . , xn) =

∫
Dφ ei

∫
d4xL φ(x1) . . . φ(xn)∫
Dφ ei

∫
d4xLg=0

(1)

using the path integral formulation of the theory. [Show your work]
Solution: The path integral in the presence of an external source J is

Z[J ] =

∫
Dφ ei

∫
d4x (L0− g

3!
φ3+Jφ) (2)

where we indicated with L0 the lagrangian for the free field. Taylor expand in J to obtain

Z[J ] = Z[0, 0]
∞∑
n=0

in

n!

∫
d4x1 . . .

∫
d4xn J(x1) . . . J(xn)G(n)(x1, . . . , xn) (3)

where the n-point Green’s function is given by

G(n)(x1, . . . , xn) =
1

Z[0, 0]

∫
Dφ ei

∫
d4x (L0− g

3!
φ3) φ(x1) . . . φ(xn) , (4)

with

Z[0, 0] =

∫
Dφ ei

∫
d4xL0 (5)

the path integral for J = 0 and g = 0.

2. (2 points total) Given G(n)(x1, . . . , xn) in (1) for the φ3 theory,

a) (1.5 points) derive the first non zero contribution to the connected four-point functionG
(4)
c (x1, . . . , x4)

in an expansion in powers of the coupling g. Derive the expression in coordinate space only,
in terms of the propagator D(xi − xj) of the scalar field. [Show your work]

Solution:

G(4)(x1, . . . , x4) =
1

Z[0, 0]

∫
Dφ ei

∫
d4x (L0− g

3!
φ3) φ(x1) . . . φ(x4) (6)

O(g0) only contains disconnected contributions.

O(g) contains a Gaussian average of an odd number of fields, hence it is zero.
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O(g2) contains the first nonzero connected contribution. It is given by

G(4)
c (x1, . . . , x4) =

1

2

(
−ig
3!

)2 ∫
d4w1

∫
d4w2 〈φ3(w1)φ

3(w2)φ(x1) . . . φ(x2)〉c

=
1

2

(
−ig
3!

)2

× 3!2 × 2

∫
d4w1

∫
d4w2 {iD(x1 − w1)iD(x2 − w1)iD(w1 − w2)iD(x3 − w2)iD(x4 − w2)

+ iD(x1 − w1)iD(x3 − w1)iD(w1 − w2)iD(x2 − w2)iD(x4 − w2)

+ iD(x1 − w1)iD(x4 − w1)iD(w1 − w2)iD(x2 − w2)iD(x3 − w2)}

= −ig2
∫
d4w1

∫
d4w2 {D(x1 − w1)D(x2 − w1)D(w1 − w2)D(x3 − w2)D(x4 − w2)

+D(x1 − w1)D(x3 − w1)D(w1 − w2)D(x2 − w2)D(x4 − w2)

+ D(x1 − w1)D(x4 − w1)D(w1 − w2)D(x2 − w2)D(x3 − w2)} (7)

The factor 3!2×2 in the second line is due to the total number of equivalent Wick contractions
of x1,2,3,4 with w1,2; 3! ways of contracting x1,2 with w1, 3! ways of contracting x3,4 with w2,
and a factor of 2 due to the exchange of w1 and w2 in the integral.

b) (0.5 points) Draw for each term the corresponding Feynman diagram in coordinate space.

Solution:

3. (2 points) Consider the lagrangian density

L =
1

2
∂µφ

a∂µφa − 1

2
m2φaφa +

1

2λ
σ2 − 1

2
σφaφa , (8)

where φa, a = 1, 2, . . . , N are N real scalar fields and σ another scalar field (called auxiliary field).
Show that if we eliminate σ by using its equation of motion, we end up with the lagrangian density

L =
1

2
∂µφ

a∂µφa − 1

2
m2φaφa − λ

8
(φaφa)2 . (9)
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Solution: Since the field σ has no derivative term the equation of motion reduces to a constraint
equation

δL
δσ

= 0 (10)

which gives

σ =
λ

2
φaφa (11)

Replacing σ in L, one obtains a lagrangian that only depends on the fields φa

L =
1

2
∂µφ

a∂µφa − 1

2
m2φaφa +

1

2λ

(
λ

2
φaφa

)2

− 1

2

λ

2
φaφaφbφb

=
1

2
∂µφ

a∂µφa − 1

2
m2φaφa − λ

8
(φaφa)2 , (12)

in agreement with the desired result.

4. (3 points total) The charged pion π− can decay into a muon µ− and a muon antineutrino ν̄µ
via the interaction

LI = 2 cos θcGF fπ ∂µφ ψ̄
(µ)γµPLψ

(ν) + h.c. ,

where the complex scalar field φ represents the pion, the Dirac field ψ(µ) represents the muon, the
Dirac field ψ(ν) represents the neutrino, cos θc is the cosine of the Cabibbo angle, GF is the Fermi
constant and fπ is the pion decay constant. The chirality-projector PL = (1 − γ5)/2 extracts the
left-handed component of the neutrino field, where the neutrino is assumed to be massless.

a) (2.5 points) Compute the decay rate Γ for the process π−(q) → µ−(p1)ν̄µ(p2) [Show your
work], using the Feynman rule for the vertex

Hints: Using the energy projectors for spin 1/2 Dirac fermions∑
r=1,2

ur(~p)ūr(~p) = /p+m

∑
r=1,2

vr(~p)v̄r(~p) = /p−m

the formula for the decay rate can be written as

Γ =
1

16π

m2
π −m2

µ

m3
π

X ,
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with mπ the pion mass, mµ the muon mass, mν = 0, and X =
∑

spinA†A the squared
amplitude summed over all final spin polarizations. You should obtain

Γ =
G2
F

4π
f2π cos2 θcm

2
µmπ

(
1−

m2
µ

m2
π

)2

directly proportional to the squared muon mass.

Solution: For convenience we define C ≡ 2 cos θcGF fπ, so that the Feynman rule is C/qPL
with the pion momentum q = p1 + p2. The amplitude for the decay process is then

A = Cū(µ)r (p1)/qPLv
(ν)
s (p2)

= Cū(µ)r (p1)
(
/p1PL + PR/p2

)
v(ν)s (p2) (13)

where we used that /p2PL = PR/p2, given that {γ5, γµ} = 0. We can now conveniently simplify

the amplitude by using the Dirac equation for ū
(µ)
r (p1) and v

(ν)
s (p2) (they are external states

for which the EoM holds true)

ū(µ)r (p1)(/p1 −mµ) = 0

/p2v
(ν)
s (p2) = 0 for mν = 0 . (14)

Substitution in (13) leads to

A = Cmµū
(µ)
r (p1)PLv

(ν)
s (p2) . (15)

The hermitian conjugate amplitude is

A† = Cmµ

(
ū(µ)r (p1)PLv

(ν)
s (p2)

)†
= Cmµv̄

(ν)
s (p2)PRu

(µ)
r (p1) (16)

where we used P †L = PL(γ†5 = γ5) and γ0PLγ
0 = PR. The squared amplitude summed over

the final spin polarisations is given by

X =
∑

r,s=1,2

A†A =
∑

r,s=1,2

C2m2
µ

(
v̄(ν)s (p2)PRu

(µ)
r (p1)

)(
ū(µ)r (p1)PLv

(ν)
s (p2)

)
= C2m2

µTr
(

(/p1 −mµ)PL/p2PR

)
= C2m2

µTr
(

(/p1 −mµ)/p2PR

)
=

1

2
C2m2

µTr
(
/p1/p2

)
= 2C2m2

µ(p1p2) (17)

Squaring q = p1 + p2, with q2 = m2
π, p21 = m2

µ and p22 = 0 one obtains

p1p2 =
1

2

(
q2 − p21 − p22

)
=

1

2

(
m2
π −m2

µ

)
. (18)

The final squared amplitude is then

X = C2m2
µ

(
m2
π −m2

µ

)
(19)
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proportional to the muon mass squared, as expected. Inserting X into the expression for Γ
we obtain

Γ =
G2
F

4π
f2π cos2 θcm

2
µmπ

(
1−

m2
µ

m2
π

)2

(20)

in agreement with the provided result.

NB. The derivation of X can be equivalently carried out without the simplifications due to
the use of the Dirac equation for the external spinors. The trace in X will then be slightly
more complicated, but will obviously lead to the same result.

b) (0.5 points) Using mπ = 139 MeV, mµ = 105.7 MeV, mν = 0, GF = 1.166 × 10−5 GeV−2,
cos θc = 0.974, and knowing that the measured value of the charged pion lifetime τ = 1/Γ is
2.603× 10−8 s, determine the value of fπ in MeV. [Show your work]

Solution: Using τ = 1/Γ = 2.603×10−8 s and the conversion factor from seconds to GeV one
obtains

Γ = 3.842× 107 s−1 = 2.528× 10−17GeV = 2.528× 10−14MeV (21)

The pion decays constant is given by

fπ =

√√√√ 4πΓ

G2
F (cos θc)2m2

µmπ

(
1− m2

µ

m2
π

)2 (22)

Using mπ = 139 MeV, mµ = 105.7 MeV, GF = 1.166 × 10−11 MeV−2, cos θc = 0.974,
one obtains fπ in MeV, fπ = 94.43 MeV (rounded to four significant digits, experimental
uncertainties are not given).
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